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Firm Overview
Versor Investments is a quantitative investment boutique where data, innovation,
and market expertise drive every decision. Headquartered in New York, Versor’s
investment team merges decades of quantitative research with an ethos that fosters
ingenuity and innovation.

Leveraging modern statistical methods and vast datasets, Versor Investments
works to create diversified sources of absolute returns across multiple asset classes.
Alpha forecast models, portfolio construction, and the trading process rely on the
ingenuity and mathematical expertise of 40+ investment professionals, which is un-
derpinned by a rigorous scientific, hypothesis-driven framework. Versor implements
state of the art technology infrastructure for risk management, portfolio optimization,
and trade execution, developed over 200+ human work years.

Versor upholds client interests with 100% employee ownership and substantial
co-investment from partners. Versor offers two categories of investment products:
Hedge Funds and Alternative Risk Premia. Both product lines are designed to
provide superior risk-adjusted returns while exhibiting low correlation to traditional
and alternative asset classes.

The information and opinions contained herein, prepared by Versor Investments LP (“Versor”)
using data believed to be reliable, are subject to change without notice. Neither Versor nor any
officer or employee of Versor accepts any liability whatsoever for any loss arising from any use
of this publication or its contents. Any reference to past performance is not indicative of future
results.

Versor prepared this document using information believed to be reliable and accurate at
the time of writing; but Versor makes no warranty as to accuracy or completeness. Neither
Versor nor any officer or employee of Versor accepts any liability whatsoever for any loss arising
from any use of this document or its contents. Versor reserves the right to enhance or change
any part of the process described in this document at any time and at Versor’s sole discretion.

This document is for informational purposes only and is not intended to be, and should not
be construed as an offer to sell, or the solicitation of an offer to buy, any interest in any security
or investment vehicle. Please refer to important disclosures at the end of the document.



Has Trend Gone Flat? Return Convexity in Trend
Following

Executive Summary
Historically, the returns generated by cta or “trend-following” hedge funds
have exhibited an unusual and attractive combination of high average
returns and positive convexity.

We document that, over time, the returns of cta funds have lost some
of both of these appealing characteristics, especially return convexity. The
long-term trend signal favored by the largest cta funds have lost more
convexity than short-term trend signals that require faster trading.

Any portfolio that successfully implements time-series forecasts exhibits
positive convexity and positive returns: A successful time-series signal tends
to predict positive returns when markets rise and leads to profitable long
positions. By the same token, such a signal tends to predict negative returns
when markets fall and leads to profitable short positions.

Based on this logic, we show how to enhance the performance charac-
teristics of trend-following portfolios with additional, newer signals not
based on past trends. We demonstrate that such portfolios have been able
to improve upon the positive return convexity previously associated with
cta strategies.

Interestingly, cross-sectional signals without market exposure can also
provide return convexity. A primary source of convexity for cross-sectional
signals is higher returns during volatile periods with large market returns.
Strategies that generate larger returns during volatile periods than during
calm periods are likely to have positive convexity.

Investors looking for positive convexity and positive returns during less
volatile times were previously attracted to trend-following. They should
now consider enhanced portfolios that also implement non-trend signals to
enhance portfolio convexity.
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1 Introduction
Historically, the returns generated by cta or “trend-following” hedge funds
have exhibited an unusual and attractive combination of high average
returns and positive convexity. As a result, cta funds have been able to
generate positive returns in periods with large positive and large negative
equity market returns without incurring offsetting negative returns during
more normal market environments. As Fung and Hsieh (2001) document,
this payoff profile resembles being long options, which earn positive returns
during volatile periods, or purchasing a form of portfolio insurance – but
without the premium costs associated with insurance strategies.

Many investors find it challenging to maintain allocations to insurance
strategies if those strategies earn negative returns during extended calm
periods. Of course, that also means that these investors go without the
benefit of the insurance during periods of market stress. Historically, trend-
following allocations have been easier to maintain because they did not
charge an obvious premium.

We document that – over time – the returns of cta funds have lost some
of both of these appealing characteristics. Clearly, that makes cta returns
less appealing than they used to be. We can link the returns of cta funds
to trend-following signals and show that the average returns and convexity
associated with these signals has declined over time. In particular, the
long-term trend signals favored by the largest cta funds that make up the
SG Trend index have lost more convexity than shorter-term trend signals
that require faster trading.

While it is possible that these declines in convexity and average returns
are temporary, they have now lasted for many years. This must give rise to
concerns that a secular change has affected the returns to trend-following
strategies.

Basic logic implies that any successful time-series portfolio should exhibit
positive convexity and positive returns. A successful time-series signal
tends to predict positive returns when markets rise and leads to profitable
long positions. By the same token, such a signal tends to predict negative
returns when markets fall and leads to profitable short positions. Note that
a successful time-series does not have to be always correct about the sign of
the return. If a time-series signal has predictive power on average, it should
lead to positive returns with positive convexity.

Interestingly, cross-sectional signals without market exposure can also
provide return convexity. A primary source of convexity for cross-sectional
signals is better performance during volatile periods with large market
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2 Convexity in Trend Following

returns. Strategies that generate larger returns during volatile periods than
during calm periods are likely to have positive convexity. Although such
“long gamma” strategies are relatively easy to construct with options, these
option strategies generally involve upfront premium payments that reduce
their profitability. During extended calm periods, these premium costs
can lead to material losses, which in turn can lead investors to abandon
the strategy. Due to their premium costs and the associated challenges of
maintaining allocations, we do not consider options-based strategies.

Based on this logic, we stress the importance of enhancing the perfor-
mance characteristics of trend-following portfolios with additional, newer
signals that enhance return convexity. We show how to measure return
convexity and how to construct portfolios with attractive convexity.

The remainder of the paper proceeds as follows: Section 2 demonstrates
that cta fund returns are largely driven by trend-following signals; section 3
describes how to measure the convexity of portfolio returns; section 4 shows
that, over time, the returns to trend-following signals have become smaller
and less convex; section 5 introduces additional signals that have had higher
and more convex returns than trend following signals; section 6 introduces a
framework for trading off average performance against convexity; section 7
illustrates portfolio combinations of signals with strong returns and high
convexity; section 8 describes performance of trend-following strategies in
2021; and section 9 concludes.

2 CTA Hedge Funds and Trend-Following
While it is generally accepted that cta hedge fund returns are driven by
trend-following strategies, many investors underestimate how central these
strategies are to cta funds. We show that more than 90 percent of return
variation for cta funds can be explained by a blend of short-, medium-, and
long-term trend-following signals in futures markets covering commodities,
equity indexes, fixed income, and currencies.

Figure 1 shows the results of returns-based style analysis for the SG Trend
index, which is an average of the returns for the 10 largest cta hedge funds.1

The style analysis blends short-, medium-, and long-term trend-following
strategies to find the portfolio returns that most closely resemble the return
to the SG Trend index. The estimation allows the exposures to the different
investment strategies to vary over time, in case managers join or leave the
index or in case continuing managers change their investment style.

1See Sharpe (1992) for a description of returns-based style analysis.
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Figure 1: CTA Investment Styles
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The figure shows risk contributions to the SG Trend index from different investment styles. The
SG Trend index is composed of the 10 largest cta funds. The estimates stem from return-based
style analysis of monthly SG Trend index returns from January 2000 to December 2021. The
investment styles include simulated long-term, medium-term, and short-term trend-following.
The simulated trend-following strategies invest in roughly 100 futures contracts across the 4
major asset classes: equities, fixed income, commodities, and currencies.

The idiosyncratic contributions contain risk from SG Trend index return components that
we cannot attribute to trend-following.

The replicating portfolios consisting of the simulated trend-following returns capture about
70 to 80 percent of the return risk of the SG Trend index returns. That corresponds to a return
correlation of approximately 90 percent.
Source: Data received from Société Générale. Internally prepared by Versor Investments.

Past performance is not indicative of future results. Performance results reflect the reinvest-
ment of income. Commodity interest trading involves substantial risk of loss. These results are
based on simulated or hypothetical returns that have inherent limitations. No representation
is being made that any account is likely to achieve results similar to those shown. Please see
additional important disclosures in the back.

As the figure shows, trend-following investment strategies account for
approximately 75 percent of the overall return risk in the SG Trend index,
leaving relatively little room for other investment styles among the cta funds
included in the index. Equivalently, the returns of the pure trend-following
replicating portfolio have a correlation of nearly 0.9 with the SG Trend
index. Among the trend-following styles, long-term trend-following now
contributes the largest amount of risk. This contrasts with the large risk
share of short-term trend-following styles in the early 2000s, when many
of the included cta funds were much smaller. We attribute this preference
for long-term trends among the largest cta funds to the potentially large
market impact associated with the faster trading required for short-term
trend signals. Very large cta funds likely find it prohibitively expensive to
implement these short-term trends.
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2.1 Simulated Trend-Following
The trend-following strategies we consider use time-series momentum and
moving-average cross-over signals. The signals are based on lookback
periods from 1 to 12 months. The long-term trend signals use lookback
periods between 6 and 12 months. The medium-term trend signals use
lookback periods between 3 and 6 months. The short-term trend signals use
lookback periods less than 3 months.

We simulate the strategies and their returns by investing in liquid futures
contracts across the 4 major asset classes: equity index futures, fixed-income
futures, commodity futures, currency futures and forwards. There are about
100 futures contracts in total, fairly evenly split across the asset classes.

We construct trend signals based on past returns. Within each asset class,
we allocate similar risk to all contracts by deflating positions by the risk of
the corresponding contract. Finally, we use equal long-term risk budgets to
allocate across asset classes.

3 Measuring Convexity in Returns
Convexity measures a nonlinear response in investment returns with respect
to a reference returns. We focus on equity market returns as the reference
returns. This focus is natural for investors with large risk allocations to
equity markets.

3.1 Convexity with Respect to Equity Market Returns
The main measure of market exposure is beta, measuring the linear depen-
dence of portfolio returns on market returns,

rt = α0 + β0rm,t + ϵt. (1)

Throughout the analytical discussion, we use returns measured in excess
of the risk-free rate, r f ,t. Here, rt is a portfolio excess return, rm,t is the
excess return on the market portfolio, β0 measures the portfolio’s market
exposure, α0 is the portfolio’s average excess return not attributable to
market exposures, and ϵt is an unidentified return contribution in period t.
We generally estimate the coefficients α0 and β0 via regression.

Clearly, the market exposure captured by β0 is constant over time. Also,
it does not vary with market returns. Jensen (1972) and Henriksson and
Merton (1981) discuss that such constant measures of market exposure
cannot identify whether a portfolio manager or investment strategy has
market timing ability. To allow for market timing, we can model different
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Figure 2: Convexity in Returns
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The figure illustrates the effects of market timing with higher exposures, β+, during periods
with positive market returns and lower exposures, β−, during periods with negative market
returns. We define convexity as the difference between the up-market and down-market
exposures, κ = β+ − β−.
Source: Internally prepared by Versor Investments.

market exposures, depending on whether market returns are positive or
negative,

rt = α + β+r+
m,t + β−r−m,t + ϵt. (2)

As described by Henriksson and Merton (1981), β+ measures the average
market exposure during periods with positive market returns r+

m,t ≥ 0 and
β− measures the average market exposure during periods with negative
market returns r−m,t ≤ 0. As before, we can estimate these coefficients
using regressions. In these regressions, the independent variables are
r+

m,t ≡ max{0, rm,t} and r−m,t ≡ min{0, rm,t}.2

As in a standard market regression, the intercept term α indicates the
average portfolio return conditional on zero excess returns for the equity
market. The regressions impose the constraint that this excess return is the
same during positive and negative market regimes. This restriction attributes
return variation across market regimes to differences in market exposures,
not differences in idiosyncratic returns. Freely estimating separate intercepts

2A constraint built into this direct approach is that we pre-determine the breakpoint
between positive and negative equity environments. The point of zero excess return is a natural
division between positive and negative equity regimes. However, the approach generalizes
to any process that identifies positive and negative market regimes, so that that we can use
the appropriate returns in the regression. For example, one could use the Hamilton (1989)
regime-switching framework to determine market regimes. If the two market regimes have
different volatilities, it may be appropriate to use generalized least squares estimation methods.
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and exposures in both market regimes is unattractive because the different
intercepts produce potentially large discontinuities in expected portfolio
returns at rm,t = 0.

The difference in market exposures during up markets and down markets
is a natural measure of return convexity:

κ ≡ β+ − β−. (3)

Figure 2 illustrates this definition of convexity in returns. A portfolio that
displays constructive market timing has less market exposure during down
markets than during up markets: β− < β+. Ideally, we might wish for
positive exposures during up markets, β+ > 0, and negative exposures
during down markets, β− < 0. However, as long as the difference in
market exposures is positive, the portfolio exhibits positive convexity and
constructive market timing.

Importantly, this measure separates convexity from average or overall
market exposures. There may be cases where we wish to manage the
average beta to a particular value, like 0 or 1. For any choice of overall
market exposure, β, it seems clear that investors would prefer a portfolio
with more convexity, “all else equal”. A portfolio with more convexity
provides better insurance during periods of poor market returns.

Note that keeping the other portfolio characteristics equal as we vary
convexity, may correspond to changes in the regression coefficients. For
example, the expected excess return on the portfolio is

µ = α + β+µm − κµ−m ,

where µm is the average excess return on the equity market and µ−m = Er−m
is the average value of r−m . Since µ−m ≤ 0, increasing convexity directly
increases the average return on the portfolio. To maintain a constant average
return as convexity rises, expected portfolio returns at rm,t = 0, given by α,
have to decline. Of course, if an investment strategy can increase convexity
and average returns, all the better.

By defining convexity as the difference between two betas we ensure
that convexity inherits some useful properties familiar from market betas.
First, the convexity of a portfolio is equal to the corresponding weighted
average of convexities of the constituent assets. Second, because convexity
is a difference of betas, the market portfolio has zero convexity with respect
to its own returns. Third, the risk free asset has zero convexity. Fourth,
convexity is proportional to leverage. These properties imply that we can
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use hedge positions in the market portfolio in order to remove market beta
from the portfolio without affecting the portfolio’s convexity.

As for linear market exposures, there are applications where we prefer a
measure that does not depend on leverage. In these situations, correlation
provides a scale-free measure of linear exposure. Since convexity is the
difference of two linear exposures, the scale-free measure of convexity is

ν = κ
σm

σ
, (4)

where κ is the convexity measure from equation 3, σm is the standard
deviation of market returns and σ is the standard deviation of the portfolio
returns.

An equivalent representation of the market timing regression in equa-
tion 2 that can be analytically more convenient is

rt = α + β+rm,t − κr−m,t + ϵt. (5)

Estimating this form via standard regression methods conveniently produces
standard errors for the convexity estimate.

If we estimate a standard market regression, like equation 1, for a port-
folio with a convex investment strategy, the regression produces a beta
estimate

β̂ ≈ β+ − κ

2
, (6)

if the distribution of market excess returns rm,t is approximately symmetric
about 0.3

3.2 Convexity and Return Horizon
Like market beta, convexity estimates can vary with return horizons. This
is a property of return covariances. Moreover, if convexity is generated by
dynamic trading strategies, like trend following, then slower strategies may
display little convexity over short return horizons but material convexity
over long return horizons. Obviously, “long” and “short” return horizons
must be considered relative to the speed of the trading strategy.

Given the typical speeds of trend following signals and the other signals
we investigate, we focus on monthly returns in our empirical analysis. We

3This result follows directly from the standard omitted variable bias calculations for linear
regressions. (See Wooldridge (2010), for example.) The bias term is −κ Cov(rm,t, r−m,t)/ Var(rm,t).
Inspection reveals that the covariance calculation produces zeros for all rm,t ≥ 0 and standard
variance terms for all rm,t ≤ 0. By symmetry, the covariance is half of the variance of the market
excess returns.
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have also analyzed quarterly and annual returns. For the signals we use
here, quarterly and annual return horizons produce qualitatively similar
results.

Longer return horizons reduce the number of available non-overlapping
observations. Such a reduction in sample size generally reduces statistical
significance of results. This can be offset by using overlapping return periods
while making the appropriate adjustments to the statistical estimates. To
avoid these complications, we focus on non-overlapping monthly returns in
our empirical analysis.

3.3 Convexity with Respect to Other Returns
There may be scenarios where we would like to measure convexity with
respect to other returns. Mechanically, this is straightforward. We simply
replace the market excess return on the right side of the regressions, rm,t,
with the excess return of interest. Everything else stays the same.

For an investment strategy that tries to time a particular asset, a natural
reference return is the long-only excess return to that asset. Any successful
timing strategy should have positive convexity with respect to the return of
the traded asset: the strategy should be less long during periods of negative
asset returns. In this context, testing for positive convexity is equivalent to
testing for timing skill.

For an investment strategy that operates in a particular asset class, an
natural reference return is the return to that asset class. For example, an
investment strategy that attempts to time the bond market should have
positive convexity with respect to a bond market benchmark return.

3.4 Convexity and Skewness
If the reference returns rm,t and forecast errors ϵt are symmetrically dis-
tributed, then an investment strategy with positive convexity generates
returns with positive skewness.4 Barberis and Huang (2008) and Harvey
and Siddique (2000) argue that investors find positively skewed returns
appealing.

Unfortunately, it becomes harder to link convexity to skewness if the
reference returns are not symmetric. Bessembinder (2018) and Albuquerque
(2012) show that returns for individual stocks generally have strong positive
skewness; Campbell and Hentschel (1992) and Albuquerque (2012) show
that daily and monthly returns for equity market indexes have negative
skewness. However, Kim and White (2004) argue that standard estimates

4Potters and Bouchaud (2005) and Martin and Zou (2012) derive the positive skewness
induced by trend-following trading strategies for unpredictable asset returns.
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of higher moments are easily contaminated by outliers and that robust
estimates of skewness for equity market index returns show less evidence
of asymmetry in the return distribution.

Although negative skewness of equity market returns would make it
difficult to say how much convexity is required for a market-timing strategy
to have positively skewed returns, positive convexity generally implies less
negatively skewed returns.

4 Trend-Following Over Time
Using both the SG Trend returns and the simulated returns to the trend-
following signals, we now show that the convexity and average returns to
these strategies have declined over time.

We estimate convexity κ for the different trend-following strategies using
regressions. By running these regressions for rolling estimation periods, we
can investigate how convexity has changed over time.

We measure equity market returns using the S&P 500 index. The results
are qualitatively similar for other broad equity market indexes.

Figure 3 graphs coefficient estimates from rolling regressions for the
SG Trend index. For each day, we estimate regression coefficients based on 5
years of trailing monthly returns. The red line shows point estimates of β−,
the slope coefficient during negative market environments. The green line
shows point estimates of β+, the slope coefficient during positive market
environments. The blue line shows convexity, the difference between the
estimates: κ = β+ − β−. The shaded areas around these lines indicate 95%
confidence intervals. Ideally, we would like to see the point estimates for the
betas and their confidence intervals to remain on either side of 0: negative
for β− and positive for β+. This would indicate positive convexity for the
returns. Strikingly, this was the case for many years early in the sample.

Starting about 10 years ago, however, the SG Trend returns apparently
lost their positive convexity. Over the most recent decade, the convexity
estimates have lost their statistical significance and have generally turned
negative. In particular, market exposures during negative market environ-
ments now appear to be be positive instead of negative. This is the opposite
of what many investors expect from cta managers.

Figure 4 repeats this process for simulated portfolios based on short-,
medium-, and long-term trend-following, respectively. As the figure shows,
the long-term trend-following signals display very little evidence of positive
convexity. In contrast, the short-term signals generally exhibit positive
convexity. The medium-term signals appear to have lost positive convexity
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Figure 3: Convexity in CTA Returns
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The figure shows rolling estimates of market exposures and convexity for the SG Trend index.
The SG Trend index is an index of the 10 largest cta hedge funds.

The lines show estimates of market exposure during periods of positive excess returns for
the market, β+ in green, during periods of negative excess returns for the market, β− in red,
and convexity κ = β+ − β− in blue. The shaded areas around the lines indicate plus or minus
2 standard errors around the estimates, covering roughly 95 percent confidence intervals.

The estimates are based on 5 years of rolling monthly returns. The return sample spans
264 months from January 2000 to December 2021.
Source: Data received from Bloomberg and Société Générale. Internally prepared by Versor
Investments.

Past performance is not indicative of future results. Performance results reflect the reinvest-
ment of income. Commodity interest trading involves substantial risk of loss. These results are
based on simulated or hypothetical returns that have inherent limitations. No representation
is being made that any account is likely to achieve results similar to those shown. Please see
additional important disclosures in the back.

over time. Since figure 1 shows that the managers in the SG Trend index have
shifted from short-term to long-term trend-following signals, the difference
in convexity among trend-following signals also explains why the SG Trend
index has lost much of its earlier convexity.

This is striking evidence that positive convexity is not a feature of all
trend-following investment styles. Investors interested in convexity must not
presume that cta funds universally provide returns with positive convexity.
Clearly, differences in investment style matter.
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Figure 4: Convexity in Trend-Following Returns
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The figure shows rolling estimates of convexity for simulated trend-following strategies. The
top panel shows results for long-term trend signals. The middle panel shows results for
medium-term trend signals. The bottom panel shows results for short-term trend signals.

In each panel, the lines show estimates convexity κ = β+ − β−. The shaded areas around
the lines indicate plus or minus 2 standard errors around the estimates, covering roughly
95 percent confidence intervals.

The estimates are based on 5 years of rolling monthly returns. The return sample spans
264 months from January 2000 to December 2021. The simulated returns are levered to the
same annual volatility as the SG Trend index returns.

The short-term trend signals use lookback periods up to 3 months. The medium-term
signals use lookback periods between 3 and 6 months. The long-term trend signals use lookback
periods between 6 and 12 months.

The simulated returns include estimated transaction costs but no management fees.
Source: Data received from Bloomberg. Internally prepared by Versor Investments.

Past performance is not indicative of future results. Performance results reflect the reinvest-
ment of income. Commodity interest trading involves substantial risk of loss. These results are
based on simulated or hypothetical returns that have inherent limitations. No representation
is being made that any account is likely to achieve results similar to those shown. Please see
additional important disclosures in the back.

5 Convex Signals
Trend-following signals are not the only signals that can generate positive
convexity. Any signal that successfully predicts future returns allows us
to be short during negative return environments and long during positive
return environments. This generates returns with positive convexity in a
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long-short portfolio. Based on this logic, adding effective time-series signals
to a trend-following portfolio can enhance the positive convexity of the
portfolio.

Interestingly, cross-sectional, non-directional investment strategies can
also generate positive convexity. An important source of this type of convex-
ity is market volatility: Strategies that generate larger returns during volatile
periods are likely to have positive convexity. Conversely, strategies that
generate lower returns during volatile periods are likely to have negative
convexity.

We now describe a collection of signals for futures trading and their
convexity. For convenience, we follow the common approach of classifying
signals into “value”, “momentum”, or “carry” groups. These classifications
provide only a crude summary description since we generally include
several signals in each category. Importantly, we explore both time-series
and cross-sectional implementations of these signal groups.

5.1 Time-Series Signals
Time-series signals assess each asset in isolation and then establish a long or
short position for that asset, depending on the signal. In this construction,
the portfolio may be long many equity index futures or commodities at
one point in time but short the same assets at another point in time. While
a time-series portfolio may have low market exposures over the course of
time, it can be materially net long or net short at any point in time.

Value
We use a range of asset-class-specific valuation criteria to assess each asset.
If an asset appears expensive relative to its own past valuation measures,
we establish a short position. Similarly, if an asset appears cheap relative to
its own past valuation measures, we establish a long position. The valuation
measures include inventories for commodities, real interest rates for fixed
income, price-earnings ratios for equities, and purchasing power parity
for currencies, among others. These trades generally profit when unusual
valuations return to more normal levels.

Carry
In futures trading, carry signals use estimates of the (negative of the) slope
near the front-end of the futures curve as return predictions. We calculate
carry based on the difference between the the spot price and the near futures
price, or the difference between the near and next futures prices. These
differences are the equivalents of yield spreads. We go long assets with a
positive yield spread and short assets with a negative yield spread. These
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trades generally profit when the yield spreads are large relative to return
volatility.

Momentum

We use past returns as return predictions. The trend-following signals we
described previously are the core of this signal family. We go long assets
with positive past returns. These trades generally profit when past return
trends continue into the future.

5.2 Cross-Sectional Signals
The time-series signals we describe above can also be converted into a cross-
sectional implementation. For the cross-sectional version we compare signal
values within asset classes to form market-neutral, long-short portfolios in
each asset class. Creating separate cross-sections within each asset class
makes the signal values more comparable. The differences between the
time-series and cross-sectional constructions produce returns with relatively
low correlations, even if the underlying signals are very similar.5

Value

We use the same asset-class-specific valuation criteria as above but now
compare the values across contracts in the same asset class instead of over
time. We establish large long positions in the most attractive asset, large
short positions in the least attractive asset, and intermediate positions in the
other assets, according to their valuation scores. As a result, a cross-sectional
portfolio is market neutral at each point in time. These trades generally
profit when the difference in valuation ratios compresses.

Carry

Similarly, we use the carry signals above to create long-short portfolios in
each asset class. These trades generally profit when the differences in carry
spreads compress.

Momentum

Finally, we use the momentum signals to create long-short portfolios in each
asset class. These trades generally profit when the assets with the strongest
past price trends continue to have the highest returns. Note that such a
cross-sectional portfolio can earn positive returns even if all the assets in an
asset class experience negative returns.

5For additional descriptions of the cross-sectional signals and portfolio construction, see
Gurnani and Hentschel (2021).



14 Convexity in Trend Following

Table 1: Convexity for Different Strategies

Portfolio Full Sample 2002 – 2011 2012 – 2021

Panel A: Trend-Following Signals
SG Trend 0.36 (0.16) 0.52 (0.24) 0.04 (0.22)
LT Trend 0.07 (0.16) 0.13 (0.21) -0.06 (0.27)
MT Trend 0.34 (0.16) 0.47 (0.22) 0.04 (0.25)
ST Trend 0.62 (0.16) 0.53 (0.21) 0.76 (0.25)

Panel B: Time-Series Signals
Carry TS 0.17 (0.16) 0.52 (0.20) -0.50 (0.26)
Value TS 0.30 (0.16) 0.21 (0.22) 0.53 (0.26)
Momentum TS 0.47 (0.16) 0.53 (0.22) 0.34 (0.24)

Panel C: Cross-Sectional Signals
Carry CS -0.04 (0.16) 0.25 (0.24) -0.49 (0.18)
Value CS 0.32 (0.16) 0.57 (0.24) -0.12 (0.22)
Momentum CS -0.23 (0.17) -0.33 (0.24) 0.10 (0.22)

The table shows convexity estimates for different investment strategies. The values
in parentheses are standard errors for the estimates.

Panel A shows trend-following strategies. The SG Trend index is an index of
the 10 largest cta hedge funds. The LT Trend returns are based on trend-following
signals with look-back periods from 6 to 12 months. The MT Trend returns are based
on trend-following signals with look-back periods from 3 to 6 months. The ST Trend
returns are based on trend-following signals with look-back periods up to 3 months.

Panel B shows time-series strategies based on value, carry, and momentum
themes.

Panel C shows cross-sectional strategies based on value, carry, and momentum
themes. The cross-sectional construction results in market-neutral portfolios in each
asset class.

The full sample contains 240 monthly returns from January 2002 to Decem-
ber 2021. The pre-2011 sample contains 120 monthly returns from January 2002
to December 2011. The post-2011 sample contains 120 monthly returns from Jan-
uary 2012 to December 2021.

For comparison, the table levers all strategies to the same volatility as the
SG Trend index.

The simulated returns include estimated transaction costs but no management
fees.
Source: Data received from Bloomberg and Société Générale. Internally prepared by
Versor Investments.
Past performance is not indicative of future results. Performance results reflect the reinvest-
ment of income. Commodity interest trading involves substantial risk of loss. These results are
based on simulated or hypothetical returns that have inherent limitations. No representation
is being made that any account is likely to achieve results similar to those shown. Please see
additional important disclosures in the back.

5.3 Convexity Over Time
We now show that many – but not all – of these signals have exhibited
higher convexity than trend signals, especially in recent years. To conserve
space, we summarize convexity in table 1 across 3 periods: the full sample,
the period up to December 2011, and the period from January 2012 onward.
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As we showed in figure 4 already, table 1 confirms that short-term
trend-following signals consistently have the highest convexity among the
trend-following signals. Among the other time-series signals, the Value
strategies stand out with consistently high convexity. Similarly, time-series
momentum has attractive convexity in all 3 sample periods. Among the
cross-sectional signals, Value produces attractive convexity. Cross-sectional
carry and momentum, however, are less consistent.

For simplicity, we show a small number of signal families that group
a much larger number of underlying signals. If we look through to the
underlying granular signals, however, we can find individual signals with
attractive convexity in most of the groups. For example, it turns out that
cross-sectional carry signals have poor convexity in currencies. However,
cross-sectional carry signals have more attractive convexity in commodities.
Nonetheless, the group averages shown in table 1 are broadly representative
of the underlying signals.

6 The Sharpe-Convexity Frontier
Given a collection of investment strategies, we can search for portfolios of
these strategies that provide the strongest returns and highest convexity of
returns. We formally search for such portfolios by finding the portfolio with
the maximum Sharpe ratio for a given convexity. We can summarize the
results of these searches on a “Sharpe ratio and convexity frontier” and then
choose the portfolio with the most attractive combination of Sharpe ratio
and convexity.

The Sharpe ratio is a natural measure of performance if the portfolio has
a market beta close to zero. If the portfolio has material market exposures,
we can hedge out this overall beta without affecting convexity.

Figure 5 shows an example Sharpe-convexity frontier. From the con-
stituent strategies, we can build portfolios with different convexity levels.
For a given level of convexity, we can then find the portfolio with the maxi-
mum Sharpe ratio. The blue line illustrates the resulting Sharpe-convexity
frontier for the simulated strategies from table 1, excluding the SG Trend
index.

The light blue circle on the frontier marks a convex portfolio for which
we present further analysis. We intentionally select a portfolio with higher
convexity and Sharpe ratio than the SG Trend index. However, there are
several such portfolios along the frontier above and to the right of the
SG Trend index. We choose a portfolio away from the end of the frontier.
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Figure 5: Sharpe-Convexity Frontier
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The figure shows the frontier of maximum Sharpe ratio for a given convexity based on
combinations of 9 underlying strategies.

The simulated underlying strategies include: long-term, medium-term, and short-term
trend following, time-series implementations of value, carry, and momentum, as well as
cross-sectional implementations of value, carry, and momentum.

All of the simulated strategies are levered to the same long-term risk as the SG Trend
index. The composite strategies on the frontier, however, have lower risk due to diversification.

The estimates of convexity and Sharpe ratios are based on 240 monthly returns from
January 2002 to December 2021.

The figure marks the “convex” portfolio we use for further analysis. For comparison, the
figure also marks the SG Trend index levered to the same risk as the convex portfolio. This
leverage changes the convexity but not the Sharpe ratio.

The simulated returns include estimated transaction costs but no management fees.
Source: Data received from Bloomberg and Société Générale. Internally prepared by Versor
Investments.

Past performance is not indicative of future results. Performance results reflect the reinvest-
ment of income. Commodity interest trading involves substantial risk of loss. These results are
based on simulated or hypothetical returns that have inherent limitations. No representation
is being made that any account is likely to achieve results similar to those shown. Please see
additional important disclosures in the back.

Nearby portfolios are qualitatively similar. For comparison, the figure also
shows the convexity and Sharpe ratio of the SG Trend index.6

6.1 Interpretation
The frontier allows us to separate the portfolio with the highest Sharpe ratio
from all other portfolios with the same level of return convexity. Conversely,
we can find the portfolio with the highest convexity for a given Sharpe ratio.

The mean-variance efficient frontier is a familiar analogue. There, we
search for the portfolio with maximum return for a given risk level. Here,

6For comparison, we lever the SG Trend index to the same risk as the selected “convex”
portfolio. This leverage affects the convexity but not the Sharpe ratio.
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we search for the portfolio with the maximum Sharpe ratio for a given
convexity. We use the Sharpe ratio as a performance measure, instead of
returns, since the portfolio constituents can use leverage and may have
different levels of risk and return. The Sharpe ratio removes the effects of
this leverage and accounts for risk.

For the mean-variance frontier, we prefer portfolios with lower risk and
higher returns. They are in the upper left of the familiar frontier diagram.
For the Sharpe-convexity frontier, we prefer portfolios with higher convexity
and higher Sharpe ratios. They are in the upper right of the frontier diagram.

For a portfolio employing a weighted average of underlying strategies,
the portfolio convexity is the weighted average of the strategy convexities.
This is directly analogous portfolio betas being equal to the weighted average
beta of the constituents. In contrast, the Sharpe ratio of a portfolio is not a
weighted average of the constituent Sharpe ratios, just like the portfolio risk
is not a weighted average of the constituent risk levels.

As for the mean-variance frontier, the full Sharpe-convexity frontier
contains dominated portfolios. For portfolios to the left of the maximum
Sharpe ratio portfolio, we can find portfolios with the same Sharpe ratio
and higher return convexity. We prefer these portfolios on the right side of
the frontier. Figure 5 includes the left side for illustration.

Among the non-dominated portfolios on the right side of the frontier,
however, there is not a single “best” portfolio. Here, there generally are
tradeoffs between higher Sharpe ratios or higher convexity.

Conceptually, we can trace the Sharpe-convexity frontier by first finding
the portfolio with maximum Sharpe ratio absent the convexity constraint.
That portfolio is at the peak of the Sharpe-convexity constraint and has a
convexity we can compute. From there, we can find additional portfolios
with maximum Sharpe ratio subject to gradually increasing or decreasing
required convexity levels. In that sense, the portfolios on either side of the
peak are more constrained. As a result, they have lower Sharpe ratios.

From this mental calculation, we can see that the portfolios along the
Sharpe-convexity frontier trace a path in mean-standard-deviation space.
The path starts from the tangency portfolio without convexity constraints.
As we require higher or lower convexity levels, the constrained frontier
moves down in mean-standard-deviation space. As a result, the constrained
Sharpe ratio falls.

Unlike the mean-variance frontier, the Sharpe-convexity frontier does
not follow a particular functional form. The rate of decline from the peak
Sharpe ratio can be different on the left and right side of the frontier. (We
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mostly care about the right side.) The steepness of the decline depends on
the return characteristics of the available assets.

The frontier in figure 5 is an illustration built on the 9 signal portfolios
described above. This is a fairly limited set of underlying strategies. The
approach can handle an arbitrary number of strategies. With a larger number
of strategies, the Sharpe-convexity frontier generally expands vertically and
horizontally, making more attractive portfolios available. Of course, this
also changes the trade-off between available Sharpe ratios and available
convexity.

6.2 Optimization
To find the portfolio with maximum Sharpe ratio for a given level of convex-
ity, we find the maximum Sharpe ratio portfolio subject to linear constraints
on the portfolio weights. The constraints are:

• The portfolio has a specified level of convexity, say z.
• The weights sum to 1.
• The weights are positive.
Formally, we search for a portfolio w that solves

max
w

θ(w) = w′µ
(
w′Σw

)−1/2 (7)

s.t. w′κ = z

w′ι = 1

wi ≥ 0 ∀i,

where µ is the vector of expected excess returns associated with the strate-
gies, Σ is the covariance matrix of strategy returns, κ is a vector of convexity
levels associated with the strategies, z is a number we choose and hold fixed
for a given optimization, ι is a conformable vector of ones, and wi is element
i of the weight vector w.

When we repeat this process for a range of convexity levels z, we find
the portfolios along the Sharpe-convexity frontier. Generally, the most inter-
esting range of convexity lies between the lowest convexity of the available
strategies and the highest level of convexity of the available strategies.7

The final constraint rules out leverage. Like the familiar market beta,
convexity is proportional to portfolio leverage. To avoid artificial increases
in convexity due to leverage, we focus on optimizations that don’t permit
leverage.

7These are not strict limits. If we allow negative allocations or leverage, then the portfolios
can attain convexity outside of the range of convexities associated with the individual strategies.
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Like mean-variance optimizations with inequality constraints, these op-
timizations generally do not have analytical solutions. However, they can
be solved iteratively using numerical methods. In particular, any portfolio
optimization method that can find a maximum Sharpe ratio portfolio subject
to standard portfolio constraints can solve the optimizations in equation 7.

Since the optimizations required for the Sharpe-convexity frontier are
mean-variance optimizations, we can exploit experience with mean-variance
optimizations in order to improve estimates of the Sharpe-convexity fron-
tier. A well-known concern for mean-variance optimizations is that they
may produce concentrated portfolios if they employ mean returns with
large dispersion compared to the dispersion in risk characteristics. The
corresponding portfolios have very large ex ante – but not ex post – Sharpe
ratios. Naturally, the portfolios along the Sharpe-convexity frontier can
become similarly concentrated under the same circumstances. Safeguards
that are useful in mean-variance optimization are similarly effective here.
Three approaches in wide-spread use are shrinkage of the expected returns,
position limits, and shrinkage of the covariance matrix.8 We use position
limits by constraining the weights to be positive and less than 1.

7 Convex Portfolios
Given the collection of signals from section 5, we can construct a composite
signal that targets high returns with high convexity. As table 1 and figure 5
show, several of the new signals have higher convexity than trend-following
signals. As a result, adding the new signals allows us to find portfolios with
higher convexity than pure trend-following.

Figure 6 shows the rolling convexity estimates for the portfolio marked
on the frontier in figure 5. Since we are interested in portfolios with high
convexity, we intentionally did not choose the strategy with maximum
Sharpe ratio. As the figure shows, however, we can start from the portfolio
with maximum Sharpe ratio and materially increase convexity without large
reductions in the Sharpe ratio. Comparing the estimates in figure 6 to those
shown in figure 3 for the SG Trend index demonstrates that the enhanced
portfolio consistently exhibits higher convexity. As the graphs show, the
convex portfolio has materially more negative beta during negative equity
markets than the SG Trend index.

8Common shrinkage methods for expected returns include statistical approaches based on
James and Stein (1961), and financial approaches based on Black and Litterman (1992). Common
shrinkage methods for the covariance matrix include Ledoit and Wolff (2004). Jagannathan and
Ma (2003) show that position limits are closely related to covariance shrinkage.
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Figure 6: Convex Portfolio
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The figure shows rolling estimates of market exposures and convexity for a simulated convex
portfolio. The lines show estimates of market exposure during periods of positive excess
returns for the market, β+ in green, during periods of negative excess returns for the market,
β− in red, and convexity κ = β+ − β− in blue. The shaded areas around the lines indicate
plus or minus 2 standard errors around the estimates, covering roughly 95 percent confidence
intervals.

The portfolio blends a range of signals in order to find an attractive combination of Sharpe
ratio and convexity. The signals are described in section 5. The portfolio construction along the
Sharpe-convexity frontier is outlined in section 6.

The estimates are based on 5 years of rolling monthly returns. The return sample spans
240 months from January 2002 to December 2021.

The simulated returns include estimated transaction costs but no management fees.
Source: Data received from Bloomberg. Internally prepared by Versor Investments.

Past performance is not indicative of future results. Performance results reflect the reinvest-
ment of income. Commodity interest trading involves substantial risk of loss. These results are
based on simulated or hypothetical returns that have inherent limitations. No representation
is being made that any account is likely to achieve results similar to those shown. Please see
additional important disclosures in the back.

Finally, table 2 summarizes the long-term performance characteristics of
the convex trading strategy illustrated above and trend-following strategies.
The table demonstrates that the convex portfolio has higher performance
in addition to higher convexity. Of course, finding such a strategy was the
purpose of constructing the Sharpe-convexity frontier. The table compares
5 strategies: the simulated convex portfolio, simulated long-term trend
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Table 2: Return Characteristics for Convex Strategies

Convex LT Trend MT Trend ST Trend SG Trend

Panel A: Full Sample
Return 12.22 10.87 9.63 7.58 4.56
Risk 12.44 12.44 12.44 12.44 12.44
Sharpe 0.87 0.75 0.65 0.47 0.21
Convexity 0.62 0.07 0.34 0.61 0.37
Beta -0.09 -0.12 -0.11 -0.16 -0.00
Max DD -15.33 -16.77 -19.29 -24.08 -23.40

Panel B: 2002 – 2011
Return 20.01 15.67 15.63 12.99 6.36
Risk 13.27 12.16 12.95 12.14 14.08
Sharpe 1.44 1.16 1.08 0.92 0.26
Convexity 0.72 0.13 0.46 0.53 0.55
Beta -0.10 -0.12 -0.18 -0.14 -0.08
Max DD -9.78 -16.24 -13.06 -11.22 -18.02

Panel C: 2012 – 2021
Return 4.42 6.08 3.62 2.16 2.77
Risk 11.16 12.61 11.71 12.59 10.58
Sharpe 0.30 0.38 0.21 0.06 0.16
Convexity 0.44 -0.06 0.04 0.76 0.03
Beta -0.02 -0.09 0.03 -0.16 0.12
Max DD -15.33 -16.77 -19.29 -24.08 -23.40

The table shows performance characteristics for different simulated investment
strategies and the SG Trend index. The columns show results for a convex strategy
constructed from a collection of trend and non-trend signals, long-term trend follow-
ing, medium-term trend following, short-term trend following, and the SG Trend
index. The simulated strategies are levered to the same risk as the SG Trend returns.

All simulated strategies invest in about 100 liquid futures contracts across 4
major asset classes: equities, fixed income, commodities, and currencies.

The performance statistics in the rows are the annualized mean return in per-
centage points, the annualized standard deviation of returns in percentage points,
the Sharpe ratio, the convexity of returns with respect to the S&P 500, the equity
beta with respect to the S&P 500, and the maximum drawdown.

Panel A shows results for the full sample of 240 monthly returns from Jan-
uary 2002 to December 2021. Panel B shows results for 120 monthly returns from
January 2002 to December 2011. Panel C shows results for 120 monthly returns from
January 2012 to December 2021.

The simulated returns include estimated transaction costs but no management
fees.
Source: Data received from Bloomberg and Société Générale. Internally prepared by
Versor Investments.
Past performance is not indicative of future results. Performance results reflect the reinvest-
ment of income. Commodity interest trading involves substantial risk of loss. These results are
based on simulated or hypothetical returns that have inherent limitations. No representation
is being made that any account is likely to achieve results similar to those shown. Please see
additional important disclosures in the back.
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following, simulated medium-term trend following, simulated short-term
trend following, and the SG Trend index. As the table, shows, intelligently
incorporating other signals into trend-following strategies can materially
raise the Sharpe ratio and convexity compared to pure trend-following
strategies.

The table shows a direct comparison based on identical simulation as-
sumptions for all of the simulated strategies. To facilitate this comparison,
all of the simulated strategies have been levered to the same long-term
volatility as the SG Trend index.

In addition to the higher convexity, the convex portfolio has a higher
Sharpe ratio than any of the purely trend-following strategies. This demon-
strates that the Sharpe-convexity frontier can help us identify portfolios that
increase convexity without sacrificing average returns.

8 Trend in 2021
Interestingly, trend-following strategies generally had a positive year in 2021,
as we were writing this paper. For example, the SG Trend index returned
9.1 percent in 2021, its third-highest return in 10 years. While some have
interpreted this as a revival of trend-following strategies, we caution that
this performance likely was driven by material exposures to the least convex
strategy components, which had exceptionally good performance in 2021.

The large exposures to long-term trend following shown in figure 3
suggest that some of the SG Trend returns can be attributed to positive
market exposures during a period of rising equity markets. Unfortunately,
the figure shows that these positive market exposures are not accompanied
by positive convexity. Absent convexity, strategies with positive market
exposures are likely to produce negative returns during periods of market
drawdowns. Of course, this is not what most investors have historically
expected from trend-following strategies.

To illustrate this point, we show the long-term convexity of several
signals, their 2021 returns, and their long-term returns. Table 3 shows these
summary statistics. Signals like long-term trends in equities have strongly
negative convexity after the financial crisis but realized exceptional returns
in 2021, as global equity markets collectively moved up.

Figure 7 illustrates a striking negative association between 2021 returns
and signal convexity. The 2021 signal returns are marked in light blue. The
light blue line shows the linear relation between 2021 returns and long-term
signal convexity. In contrast, the dark blue markers show the long-term
returns for the same signals. The dark blue line graphs the linear relation
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Table 3: Convexity and 2021 Returns

Convexity Avg Return 2021 Return

Panel A: Developed Equities
LT Trend -0.40 1.15 21.31
MT Trend -0.18 1.65 14.87
ST Trend 0.34 -1.29 2.45

Panel B: Commodities
LT Trend -0.18 1.91 2.44
MT Trend 0.10 1.74 18.04
ST Trend 0.24 -0.32 5.17

Panel C: Fixed Income
LT Trend 0.15 6.52 -18.98
MT Trend 0.15 3.05 -15.03
ST Trend 0.37 4.17 7.09

Panel C: Developed Currencies
LT Trend 0.11 -0.27 -7.91
MT Trend -0.04 1.92 -2.88
ST Trend 0.10 0.52 -8.27

The table shows a range of signals, their long-term convexity, their long-term
annualized average returns, and their 2021 returns. The full sample consists of
monthly returns from January 2002 to December 2021.

All strategies simulate investments in about 100 liquid futures contracts across
4 major asset classes: equities, fixed income, commodities, and currencies. All
strategies are levered to the same risk as the SG Trend index, 13.5 percent.

The simulated returns include estimated transaction costs but no management
fees.
Source: Data received from Bloomberg. Internally prepared by Versor Investments.
Past performance is not indicative of future results. Performance results reflect the reinvest-
ment of income. Commodity interest trading involves substantial risk of loss. These results are
based on simulated or hypothetical returns that have inherent limitations. No representation
is being made that any account is likely to achieve results similar to those shown. Please see
additional important disclosures in the back.

between long-term returns and long-term signal convexity. Clearly, 2021
demanded a material premium for positive convexity. Long-term, however,
strategies with positive convexity do not earn lower average returns. The
dark blue markers and line illustrate that there is no long-term association
between average return and convexity.

While 2021 was a strong year for strategies with negative convexity, we
caution that such strategies are unlikely to match investor expectations
for trend-following portfolios. Most investors in trend-following portfolios
expect these strategies to deliver positive convexity.

Relying on long-term trend signals in the most liquid asset classes, like
equities and fixed income, is likely to lead to investor disappointment during
periods of weak equity markets. Yet, those appear to be the most important
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Figure 7: Returns and Convexity: Long-Term and 2021
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The figure shows annualized average strategy returns for 2021 in light blue and from 2009
to 2021 in dark blue. All underlying return data are monthly. The horizontal axis shows the
corresponding long-term convexities. Since convexity for several of these signal appears to be
lower post 2008 than pre 2008, the figure uses data from January 2009 to December 2021.

All returns are levered to the same long-term volatility as the SG Trend index.
The lines indicate the best linear fit between average return and convexity over each of the

two sample periods.
The text annotates the data points associated with long-term trend in equities, which has

displayed material negative convexity since 2009.
The simulated returns include estimated transaction costs but no management fees.

Source: Data received from Bloomberg. Internally prepared by Versor Investments.

Past performance is not indicative of future results. Performance results reflect the reinvest-
ment of income. Commodity interest trading involves substantial risk of loss. These results are
based on simulated or hypothetical returns that have inherent limitations. No representation
is being made that any account is likely to achieve results similar to those shown. Please see
additional important disclosures in the back.

signals for the the very large cta funds that make up the SG Trend index.
Futures strategies striving for positive convexity must allocate material risk
to shorter-term trend signals and non-trend signals.

9 Summary
We show how to measure convexity in portfolio returns and demonstrate
that the trend-following signals responsible for cta hedge fund returns have
lost some of their positive convexity over time. This is especially true for
the long-term trend signals favored by the largest cta hedge funds.

Since any successful timing signal generates returns with positive con-
vexity, we show that portfolios that combine effective non-trend signals with
some trend-following signals produce returns with superior returns and
convexity compared to pure trend-following portfolios. We introduce the
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Sharpe-convexity frontier that isolates the portfolios with the maximum
Sharpe ratio for a given level of convexity. This frontier allows investors to
make efficient choices among portfolios with high Sharpe ratios and high
convexity. Although these portfolio choices generally require a tradeoff be-
tween Sharpe ratios and convexity, the frontier separates the most attractive
portfolios from the rest.
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